Consumer Confidence Report # Annual Drinking Water Quality Report EXETER-MERRITT WATER COOP IL1710010 Annual Water Quality Report for the period of January 1 to December 31, 2023 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by EXETER-MERRITT WATER COOP is Purchased Ground Water For more information regarding this report contact: Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. #### Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas broduction, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, brban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. BOARD OF DIRECTORS MEETINGS ARE HELD ON THE 4TH MONDAY OF EACH MONTHANT THE OFFICE IN EXETER. JANUARY - MARCH & NOVEMBER - DECEMBER THE TIME IS 7:00 PM APRIL - OCTOBER THE TIME IS 8:00 PM # Source Water Assessment We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at the source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop to the source water assessments, including: Importance of Source water assessments, including: Importance of Source water; Susceptibility to Contamination Determination; and documentation/recommendation of Source water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: SOUTH JACKSONVILLETo determine South Jacksonville's susceptibility to groundwater contamination, a Well Site Survey, published in 1990, and IRWA's recharge area survey were reviewed. During the initial survey of South Jacksonville's source water protection area, Illinois EPA staff recorded potential sources, routes, or possible problem sites within the 400 foot minimum setback zones and the 1,000 foot maximum setback zones of the wells. One site was located in the minimum setback zones of both wells and no sites were located within the 1000 foot maximum setback zones of both wells. IRWA identified one additional site located within the recharge area. The Illinois EPA considers the source water of this facility to be highly susceptible to contamination. This determination is based on a number of criteria including: monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system, and the available hydrogeologic data on the wells. Source of Water: BLUFFSTo determine Bluffs' susceptibility to contamination, a Well Site Survey, published by the Illinois EPA in 1990, was reviewed. During the survey of Bluff's source water protection area, Illinois EPA staff recorded one potential source, route, or possible problem site within the recharge area and 1,000 foot survey radius of wells #3 and #4. No potential sources or problem sites are located within the recharge area or 1,000 foot survey radius of wells #5 and #6. In addition, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated additional sites with on-going remediation that may be of concern. Based upon this information, the Illinois EPA has determined that the Bluffs community water supply's source water wells are susceptible to contamination. This determination is based on a number of criteria including, monitoring conducted at the well, monitoring conducted at the entry point to the distribution system, and the available hydrogeologic data for the wells. As such, the Illinois EPA has provided 5-year recharge area calculations for the wells. The land use within the recharge area of the wells was analyzed as part of this susceptibility determination. This land use includes agricultural properties. | Source Water Information | Type of Water | Report Status | Location | |--|---------------|---------------|-----------| | Source Water Name | GW GW | _ <u>A</u> _ | METER PIT | | CC01-CORNER OF OXVILLE AND PEARL FF IL1710100 TP01 | GW | <u> </u> | Neter Pit | | CC02 - POTTER RD AND LEACH FARM RD | | • | • | #### Coliform Bacteria | Maximum
Contaminant Level
Goal | Total Coliform Maximum Contaminant Level | Highest No. of
Positive | Fecal Coliform or E. Coli Maximum Contaminant Level | Total No. of Positive E. Coli or Fecal Coliform Samples | | Likely Source of Contamination | |--------------------------------------|--|----------------------------|---|---|---|---------------------------------------| | 0 | 1 positive monthly sample. | 1 | | 0 | N | Naturally present in the environment. | #### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th
Percentile | # Sites Over
AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|--------------------|--------------------|-------|-----------|---| | Copper | 2023 | 1.3 | 1.3 | 0.15 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 2023 | 0 | 15 | 1.6 | 0 | dqq | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | ### Water Quality Test Results Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. # Water Quality Test Results Maximum residual disinfectant level or MRDL: Maximum residual disinfectant level goal or MRDLG: na: mrem: ppb: ppm: Treatment Technique or TT: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. millirems per year (a measure of radiation absorbed by the body) micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. A required process intended to reduce the level of a contaminant in drinking water. # Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|--| | Chlorine | 2023 | 0.9 | 0.6 - 1.3 | MRDLG = 4 | MRDL = 4 | bbw | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5) | 2023 | 14 | 0 - 16.86 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2023 | 50 | 15 - 134 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | #### Lead and Copper Definitions: na: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level
(AL) | 90th
Percentile | # Sites Over
AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|----------------------|--------------------|--------------------|-------|-----------|---| | Copper | 08/05/2022 | 1.3 | 1.3 | 0.15 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 08/05/2022 | 0 | 15 | 1.7 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | #### Water Quality Test Results Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Regulatory compliance with some MCLs are based on running annual average of monthly samples. Avq: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why Level 1 Assessment: total coliform bacteria have been found in our water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if Level 2 Assessment: possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow Maximum Contaminant Level Goal or MCLG: for a margin of safety. Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a MRDL: disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not Maximum residual disinfectant level goal or MRDLG: reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. mrem: millirems per year (a measure of radiation absorbed by the body) micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppb: # Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|--| | Chlorine | 2023 | 1 | 0.84 - 1.2 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5) | 2023 | 11 | 10.6 - 10.6 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2023 | 32 | 32 - 32 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 2023 | 0.11 | 0.11 - 0.11 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits | | Chromium | 2023 | 5.3 | 5.3 - 5.3 | 100 | 100 | ppb | N | Discharge from steel and pulp mills; Erosion of natural deposits. | | Sodium | 2023 | 22 | 22 - 22 | | | ppb | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | # South lack sonville #### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow | Lead and Copper | Date Sampled | MCLG | Action Level
(AL) | 90th
Percentile | # Sites Over
AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|----------------------|--------------------|--------------------|-------|-----------|---| | Copper | 2023 | 1.3 | 1.3 | 0.32 | 0 | ppm | | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 2023 | 0 | 15 | 5 | 2 | ppb | | Corrosion of household plumbing systems;
Erosion of natural deposits. | #### Water Quality Test Results | Definitions: | m1 6 11 ' . 11 |
some of which may require explanation. | |--------------|----------------|--| | | | | | | | | Regulatory compliance with some MCLs are based on running annual average of monthly samples. Ava: Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible Maximum Contaminant Level or MCL: using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a MRDL: disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not Maximum residual disinfectant level goal or MRDLG: reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. millirems per year (a measure of radiation absorbed by the body) mrem: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppb: # Water Quality Test Results ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. # Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|---| | Chlorine | 2023 | 0.7 | 0.5 - 1.2 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5) | 2023 | 9 | 3.42 - 11 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2023 | 54 | 8.22 - 39.9 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 08/17/2021 | 0.049 | 0.049 - 0.049 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 08/17/2021 | 1.76 | 1.76 - 1.76 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Iron | 08/17/2021 | 0.016 | 0.016 - 0.016 | | 1.0 | ppm | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits. | | Manganese | 08/17/2021 | 2.4 | 2.4 - 2.4 | 150 | 150 | ppb | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits. | | Nitrate [measured as Nitrogen] | 2023 | 1 | 1.2 - 1.2 | 10 | 10 | mqq | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Selenium | 08/17/2021 | 2.2 | 2.2 - 2.2 | 50 | 50 | ppb | N | Discharge from petroleum and metal refineries;
Erosion of natural deposits; Discharge from
mines. | | Sodium | 08/17/2021 | 9.4 | 9.4 - 9.4 | | | ppb | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | | Zinc | 08/17/2021 | 0.023 | 0.023 - 0.023 | 5 | 5 | ppm | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Naturally occurring; discharge from metal | #### Violations Table ### Lead and Copper Rule The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials. | Violation Type | Violation Begin | Violation End | Violation Explanation | |------------------------------------|-----------------|---------------|---| | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 05/01/2023 | | We failed to test our drinking water for the contaminant and period indicated. Because of
this failure, we cannot be sure of the quality of our drinking water during the period
indicated. | | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 08/01/2023 | 2023 | We failed to test our drinking water for the contaminant and period indicated. Because of
this failure, we cannot be sure of the quality of our drinking water during the period
indicated. | ### Public Notification Rule The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency). | Violation Type | Violation Begin | Violation End | Violation Explanation | |--|-----------------|---------------|--| | PUBLIC NOTICE RULE LINKED TO VIOLATION | 06/12/2021 | | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. | #### 2023 Regulated Contaminants Detected #### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th
Percentile | # Sites Over
AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|--------------------|--------------------|-------|-----------|---| | Copper | 2023 | 1.3 | 1.3 | 0.0047 | 0 | ppm | | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | #### Water Quality Test Results | Definitions: | The following | tables contain | scientific ter | rms and measures, | some of which may require explanation. | |--------------|---------------|----------------|----------------|-------------------|--| | | | | | | | | Avg: | Regulatory | compliance v | with some | MCLs are bas | ed on | running annual | average of | monthly samples. | |------|------------|--------------|-----------|--------------|-------|----------------|------------|------------------| | | | | | | | | | | | Level 1 Assessment: | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why | |---------------------|--| | | A A CONTRACT OF THE ACTUAL PROPERTY AC | total coliform bacteria have been found in our water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if Level 2 Assessment: possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible Maximum Contaminant Level or MCL: using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a MRDT. disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not Maximum residual disinfectant level goal or MRDLG: reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable. na: millirems per year (a measure of radiation absorbed by the body) mrem: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. :dqq milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. ppm: Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. # Regulated Contaminants | Disinfectants and
Disinfection By-
Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|--------------------|---------------------------|-----------------------------|-----------------------|----------|-------|-----------|--| | Chlorine | 2023 | 1.2 | 1 - 2 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | Haloacetic Acids
(HAA5) | 2023 | 16 | 12.1 - 23.6 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | Total Trihalomethanes (TTHM) | 2023 | 67 | 41 - 82.6 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Inorganic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 2023 | 0.011 | 0.011 - 0.011 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 2023 | 0.6 | 0.57 - 0.57 | 4 | 4.0 | ррт | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Nitrate [measured as Nitrogen] | 2023 | 1 | 1.4 - 1.4 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Sodium | 2023 | 35 | 35 - 35 | | | ppb | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | | Radioactive
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Combined Radium
226/228 | 2023 | 1.71 | 1.31 - 1.71 | 0 | 5 | pCi/L | N | Erosion of natural deposits. | | Gross alpha excluding radon and uranium | 2023 | 3.67 | 0 - 3.67 | 0 | 15 | pCi/L | N | Erosion of natural deposits. | # Turbidity | | Limit (Treatment
Technique) | Level Detected | Violation | Likely Source of Contamination | |----------------------------|--------------------------------|----------------|-----------|--------------------------------| | Highest single measurement | 1 NTU | 0.091 NTU | N | Soil runoff. | Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants. ### 95PT | | | | | , <u> </u> | |--------------------------------|---------|------|---|--------------| | Lowest monthly % meeting limit | 0.3 NTU | 100% | N | Soil runoff. | | | | | | | Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants. ## Total Organic Carbon The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.